Flag Varieties + Deligne-Lusztig Vorieties Sam Jeralds

Deligne-Lusztig Seminar March 2005

31. Recollections on flag varieties

Fix an algebraically-closed field 1k, and Gra connected reductive group /1k.

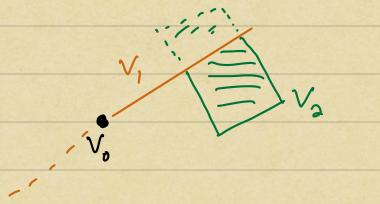
Recall that a Borel subgroup B = Gr

is a maximal closed connected solvable subgroup of Gr.

Our first goal is to understand the flag variety associated to Gr.
We notivate the definition by considering the classical case of GLn.

1. A: Flags in 1kn

Example: We imagine, in 1k³, building a "flag" on a "flag pole", via



· Definition: The (full/complete) flag variety is, as a set,

Fln := { (V.): V. a flag in 1kn}

Note that GLn (K) acts on Fln by left multiplication, via compatible change of basis. Fix the "base-point flag"

V.º:= {0} < (e,) < (e,e2) < ... < (e,...,en)=1k1

where () denotes lk-span, and e; the ith standard basis element.

• Exercise: $Fl_n = GL_n(1k) \cdot (V_n^o)$ • Exercise: $stab_{GL_n(1k)} (V_n^o) = B_n = \left\{ \begin{pmatrix} * & * & * \\ o & * & * \end{pmatrix} \right\},$

the standard Borel in GLn (12).

Together, these exercises allow us to give a geometry to Fln, via orbit-stabilizer.

· Proposition 1: Fln = GLn(IK)/Bn

1. B: Structure Theory of Flag Varieties

Motivated by Proposition 1, we make the following

Definition: Let G be a connected reductive group /IK, and B & G a Borel subgroup. Then the flag variety associated to G is the homogeneous space B:= G/B

This formulation of the flag variety is beneficial in that it shows B is smooth (since it is homogeneous). But, it is less beneficial in that it seemingly depends on a choice of Borel. But, it in fact doesn't.

· Proposition 2: 6/8 ~> {Borel subgroups B'< 6-}

g B -> g B g -1

- Remark: This relies on all Borels being conjugate, and B being self-normalizing.

A similar common alternative description is given by the following: Let g = Lie G, g = Lie B.

Then we have

Then we have $G/B \xrightarrow{G} B$ Borel subalgebras B'cog $gB \longrightarrow Adg(B)$

But,
{Borel subalgebras b'coy} = Gr (dim b, og),

He Grassmannian of dim b- subspaces of og.

· Exercise: The property of being a Borel subalgebra is a closed condition.

=> B is projective

Recall for G and a fixed B, we had the Bruhat decomposition

G= L BüB weW

for weW, the Weyl group

This gives the corresponding Bruhat decomposition on B = G/B, via

· Definition: We call the strata

Schubert cell and its clasure RivB/B

a Schubert variety.

In particular, the Bruhat decomposition gives a decomposition of B into B-orbits, with distinguished orbit representatives wiB/B.

Each stratum Bib/B is affine, and in fact $BiB/B \cong A_{K}^{l(w)}$ where l(w) is the length of w in the Weyl group.

1. C: Double Flag Varieties

- Definition: For G, B, and B as before,

 the double flag variety associated

 to G is given by

 B×B = 6/B × 6/B
- · Exercise: For any group Grand subgroup H,

 then is a canonical bijection

 {H-orbits on 6/H} \ \ > {G-orbits on 6/H \times 6/H}

 (diagonal action).
- Particularly, we have canonical bijections

 W SB-orbits on G/B3

 1

 6-orbits on G/B × G/B3.
- · Definition: We denote by $O(\omega)$ the Gr-orbit in $B \times B$ labelled by $\omega \in W$.

Concretely, for a fixed Borel as above, we have the constructions

$$= (g, B, g_2 B) | g_1^{-1}g_2 \in B \dot{\omega} B$$

By the first construction, it's clear that dim O(u) = lim B + l(u)

From the second, it's clear that

O(1) = SBCB×B, O(wo) = B×B dense

Definition: For two Borels B_1 , $B_2 laphi G_7$,

we say B_1 is in relative position

w to B_2 if $(B_1, B_2) \in \mathcal{O}(\omega) \subset \mathcal{B} \times \mathcal{B}$.

We denote this by $B_1 \stackrel{\text{\tiny W}}{\longrightarrow} B_2$.

32. Deligne-Lusztig Varieties

We are now ready to discuss Deligne-Lusztig varieties. Take as before Grommeted reductive, and let IK= IFq. Assume Gris defined over IFq, and let F be the corresponding Frobenius map.

2.A: Deligne-Lusztig Varieties X(w)

Set I = {(B, F(B)) | B \in B}, the
graph of the Frobenius.

· Definition: For well, the Deligne-Lusztig variety X (w) is given by

· Remark: By transversality of the intrsection, X(w) is smooth of pure dimension &(w). Example: X(e) is just the set of rational

Borel subgroups, so

X(e) = BF

= GF/BF, if B is

F-stable.

This is a dimension O subset in B.

In general, we have that

· Fix an F-stable Borel B, and recall that

G/B ~ B

g B - g Bg^-1

Using this Borel to define the base point, tracing through the associations we in fact get

X(w) = { gB & G/B | g-1 F(g) & Bio B}

· Corollary: GF ~ X(w) by left multiplication.

2.B: Torsors over X(w)

Keeping the F-stable Borel B as above, let U be the unipotent radical of B. Then we get a T-torsor over B given by

Note that naturally Tnormalizes U, so Tacts on Y from the right.

· Definition: For well, define the locally-closed subvariety

This again has a natural left Gr action. What about the right T-action?

For teT, gUe Y(w), we see that

 $(gt)^{-1}F(gt)=t^{-1}[g^{-1}F(g)]F(t) \in t^{-1}U\dot{\omega}UF(t)$ Then

 $t^{-1}U\dot{\omega}UF(t) = Ut^{-1}\dot{\omega}UF(t)$ $= U\dot{\omega}(\dot{\omega}^{-1}t^{-1}\dot{\omega})UF(t)$ $= U\dot{\omega}U(\dot{\omega}^{-1}t^{-1}\dot{\omega})F(t)$

Thus gtU & Y(w) if and only if $\dot{\omega}^{-1}t^{-1}\dot{\omega}F(t)=1$

 $\Leftrightarrow iF(t)i^{-1}=t$ $\Leftrightarrow t \in T^{WF}$

where $\dot{w}F:T\to T$, $t\mapsto \dot{w}F(t)\dot{w}^{-1}$ is a Frobenius map for T.

· Corollary: Y(w) has a right action of TWF, which commutes with the left GrF action.

Example: Let Gr=SLz, TcBcSLz the standard diagonal and upper triengular Borel. Then W= \{1, s\} where we pick representative

 $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$

Of course, $B = \frac{SL_2}{B}$ $= \{\{o\} \subset L \subset \mathbb{K}^2\}$ $\cong \mathbb{P}^1$

In $B \times B$ we have the two orbits $(9(1) \approx \Delta P' \subset P' \times P')$ $(9(s) \approx (P' \times P') \setminus \Delta P'$

Thus, two flags $\frac{303}{303}$ CL Clk², $\frac{303}{303}$ CL clk² are in relative position S if and ally if $\frac{1}{2}$ L+L'=lk².

Nexl, X(1) = P'(Fg), X(s)= P'\P'(Fg).

A point in $Y = \frac{6}{v}$ over the flag $\frac{20}{c} = L = 1k^2$ is the data of the flag along with choices of vectors $v \in L$, $u \in \frac{1k^2}{L}$ such that $\det(v, u) = 1$.

-Remark: Note that s intuchanges the roles of v and u. Thus...

A point in Y(s) then corresponds to a flag $\{0\} \subset L \subset \mathbb{R}^2$ with a vector $v \in L$ such that $\det(v, F_{cvs}) = 1$ That is, if v = [x], then we need $xy^q - x^qy = 1$

- · Exercise: Check all of this example carefully!
- · Exercise: let Gr = GL(V), V=1k, The diagonal torus, and B= GL/B

 the full flag variety as in §1.

 Let w= (123...n) the n-cycle.
 - (a) Show two flags V., V.' satisfy
 relative position V. V.' if and only if

 Vi + Vi' = Vi+1

(b) V. = F(V.) iff V; = V,+ F(V) + -- + F⁵⁻¹(V,)

(c) Deduce that

$$Y(\omega) \cong \{(x_1,...,x_n) \in A^n | \det((x_i)^{q_{j-1}})^{q_{j-1}} \}^{q_{j-1}}$$