Deligne-Lusztig theory notes week 3

Joseph Newton

Layout: Sections 1 and 2 continue the discussion of Frobenius maps on algebraic groups from last week. Sections 3 and 4 establish some background on finite groups. Sections 5, 6 and 7 cover Harish-Chandra theory. Section 8 has some additional comments on the references used.

Throughout let p be a prime, q a power of p, \mathbf{G} a connected reductive algebraic group over \mathbb{F}_q , and \mathbb{K} an algebraically closed field of characteristic zero. For a set X and function $F: X \to X$ we write X^F for the subset of elements fixed by F, that is $\{x \in X \mid F(x) = x\}$.

1 Steinberg maps and finite groups of Lie type

Recall that a q-Frobenius map on an algebraic group G is a group variety morphism F: $G \to G$ corresponding to an algebra morphism $F^* : \mathcal{O}_G \to \mathcal{O}_G$ such that

- 1. $F^*(\mathcal{O}_{\mathbf{G}}) = \{ f^q \mid f \in \mathcal{O}_{\mathbf{G}} \}, \text{ and }$
- 2. for every $f \in \mathcal{O}_{\mathbf{G}}$ there exists some $m \in \mathbb{N}$ with $(F^*)^m(f) = f^{q^m}$.

We then say that F gives \mathbf{G} an \mathbb{F}_q -rational structure. We call F a Steinberg map or Frobenius root if some positive power of F is a Frobenius map. The group \mathbf{G}^F is a finite group, and such groups are called finite groups of Lie type.

We say a subvariety $V \subseteq G$ is F-stable if $F(V) \subseteq V$. If we have $T \subseteq B \subseteq G$ with T an F-stable maximal torus and B and F-stable Borel subgroup, then [DM] calls T quasi-split.

Proposition (1.4.12 in [GM] or 4.2.22 in [DM]). Let \mathbf{G} be connected reductive and $F: \mathbf{G} \to \mathbf{G}$ a Steinberg map. All F-stable torus and Borel pairs are \mathbf{G}^F -conjugate. That is, if $\mathbf{T} \subseteq \mathbf{B}$ and $\mathbf{T}' \subseteq \mathbf{B}'$ are two pairs of an F-stable torus and F-stable Borel subgroup of \mathbf{G} , then there is $g \in \mathbf{G}$ with F(g) = g, $g\mathbf{T}g^{-1} = T'$ and $g\mathbf{B}g^{-1} = \mathbf{B}'$.

Recall that **G** has a Weyl group **W** which is a Coxeter group with generating set S. For $I \subseteq S$, we write \mathbf{W}_I for the subgroup generated by I. For $w \in \mathbf{W}$ we write $\ell(w)$ for the length of w, meaning the minimal length of w when written as a product of generators. When **G** has quasi-split torus, pretty much every aspect of the theory of reductive groups descends to the finite group \mathbf{G}^F :

Proposition (4.4.1, 4.4.8 in [DM]). Let **G** be connected reductive, $F : \mathbf{G} \to \mathbf{G}$ a Steinberg map and $\mathbf{T} \subseteq \mathbf{B} \subseteq \mathbf{G}$ an F-stable torus and Borel pair. Then:

- 1. The Weyl group $\mathbf{W} = N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$ satisfies $\mathbf{W}^F = N_{\mathbf{G}}(\mathbf{T})^F/\mathbf{T}^F$.
- 2. $(\mathbf{B}^F, N_{\mathbf{G}}(\mathbf{T})^F)$ is a BN-pair for \mathbf{G}^F with Weyl group \mathbf{W}^F .
- 3. The action of F on W is an automorphism of the Coxeter system (W, S). In particular, F permutes the elements of S, and we write S/F for the set of F-orbits.

- 4. \mathbf{W}^F is a Coxeter group with generating set $\{w_I \mid I \in S/F\}$, where w_I is the longest element of \mathbf{W}_I .
- 5. We have a Bruhat decomposition $\mathbf{G}^F = \bigsqcup_{w \in \mathbf{W}^F} \mathbf{B}^F w \mathbf{B}^F$.

Beware that \mathbf{W}^F can be different from \mathbf{W} . Also, a priori $N_{\mathbf{G}}(\mathbf{T})^F = N_{\mathbf{G}^F}(\mathbf{T})$ could be smaller than $N_{\mathbf{G}^F}(\mathbf{T}^F)$, although I don't know of an example of this.

2 Examples of Frobenius and Steinberg maps

Recall that \mathbb{F}_q , the finite field of order q, can be defined as the field extension of \mathbb{F}_p consisting of the q distinct roots of the polynomial $x^q - x$. This means that if F_q is the field homomorphism $F_q(a) = a^q$ on the algebraic closure $\overline{\mathbb{F}}_p$, then we have $(\overline{\mathbb{F}}_p)^{F_q} = \mathbb{F}_q$. Now, \mathbb{F}_{q^2} is a 2-dimensional vector space over \mathbb{F}_q , so every element is an \mathbb{F}_q -linear combination of 1 and λ where λ is some fixed element of \mathbb{F}_{q^2} with $\lambda \notin \mathbb{F}_q$. We can then think of the action of F_q on \mathbb{F}_{q^2} as 'conjugation'; it sends $a + b\lambda$ to $a^q + b^q\lambda^q = a + b\lambda^q$. This is analogous to conjugation in \mathbb{C} , and in some circumstances it's almost identical. For example, if q = 3 then 2 = -1 does not have a square root in \mathbb{F}_3 , so we take λ to be a square root of -1 in \mathbb{F}_9 . Then $F_3(a + b\lambda) = a + b\lambda^3 = a - b\lambda$.

If $\mathbf{G} = \operatorname{GL}_n(\overline{\mathbb{F}}_p)$ and F is the morphism raising matrix entries to the power of q, then F is a Frobenius map and $\mathbf{G}^F = \operatorname{GL}_n(\mathbb{F}_q)$. The Borel subgroup \mathbf{B} of upper triangular matrices and the maximal torus \mathbf{T} of diagonal matrices are then F-stable subgroups, the groups \mathbf{B}^F and \mathbf{T}^F are the upper triangular and diagonal matrices with entries in \mathbb{F}_q , and $\mathbf{W}^F = \mathbf{W}$. A less trivial example of a Frobenius map on GL_n is $F'(M) = F((M^\top)^{-1})$, where M^\top is the transpose of the matrix M, which satisfies $(F')^2 = F^2$ (see [DM, 4.3.3]). The group $\operatorname{GL}_n^{F'}$ is also denoted $\operatorname{GU}_n(q)$, the general unitary group, and it is the group of unitary transformations M of $(\mathbb{F}_{q^2})^n$. A matrix M is unitary if $MM^* = I_n$ where M^* is the conjugate transpose, using the adjusted notion of 'conjugation' above. This is analogous to the group of unitary matrices over \mathbb{C} .

The subgroup of upper triangular matrices is not F'-stable, but fortunately there is an alternate presentation of GU_n where it is. Let $F'' = F(J_n(M^\top)^{-1}J_n)$ where J_n is the matrix with 1's along the top-right to bottom-left diagonal (see [GM, 1.3.19]), and this has the nice property that the subgroups \mathbf{B} and \mathbf{T} are F''-stable. Recall that the Weyl group \mathbf{W} of GL_n is isomorphic to the symmetric group, with generators $s_1, \ldots s_{n-1}$ where

The Steinberg map F'' acts on W by sending s_i to s_{n-i} (if you know what a Coxeter diagram or Dynkin diagram is, F'' is the diagram automorphism in type A_{n-1}). Consequently, $\mathbf{W}^{F''}$ will be a Coxeter group with rank $\lceil n/2 \rceil$ and generators $s_1s_{n-1}, s_2s_{n-2}, \ldots, s_m$ if n = 2m or $s_ms_{m+1}s_m$ if n = 2m + 1.

If F is a Frobenius map on G and r is a positive integer, then we can construct the map

$$\mathbf{G}^r \to \mathbf{G}^r, \quad (g_1, g_2, \dots, g_r) \mapsto (F(g_r), g_1, \dots, g_{r-1}).$$

This is an example of a Steinberg map that is not a Frobenius map (see [GM, Example 1.4.23, 1.4.29]).

3 Character theory

This section is a brief recap of character theory for finite groups.

If G is a finite group and V is a representation of G, then we can write the action of G as a group homomorphism $\rho: G \to \operatorname{GL}(V)$. The *character* of V is the function $\chi: G \to \mathbb{R}$ sending $g \in G$ to $\operatorname{tr}(\rho(g))$, the trace of the action matrix of g.

Example. The character of the trivial representation of G sends every element to 1. The character of the regular representation $\mathbb{k}G$ sends the group identity to |G| and every other element to 0.

Here are some important properties of characters:

- $\chi_V(1) = \dim V$
- $\chi_{V \oplus W} = \chi_V + \chi_W$
- $\bullet \ \chi_{V \otimes W} = \chi_V \cdot \chi_W$
- $\chi_{V^*} = \overline{\chi_V}$ where the bar means the complex conjugate.
- Two representations are isomorphic if and only if they have the same character (assuming k is algebraically closed and has characteristic 0).
- χ_V is a class function, meaning $\chi_V(g) = \chi_V(hgh^{-1})$ for all $g, h \in G$.
- The space of class functions $G \to \mathbb{R}$ is a vector space, and the characters of the irreducible representations form a basis for the space of class functions. A linear combination of irreducible characters with integer coefficients is called a *virtual character*.
- We define an inner product on the space of class functions given by

$$\langle \chi, \xi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\xi(g)}.$$

If χ, ξ are irreducible characters, we have $\langle \chi, \xi \rangle = 1$ if $\chi = \xi$ and 0 otherwise, and so

$$\langle \chi_V, \chi_W \rangle = \dim \operatorname{Hom}_G(V, W).$$

4 Tensor-Hom adjunction and induction

This section is an overview of induction, restriction, inflation and invariants for finite groups.

Let R be a (unital associative) ring, M a right R-module and N a left R-module. The tensor product $M \otimes_R N$ is the quotient of $\mathbb{Z}[M \times N]$ by the relations $mr \otimes n = m \otimes rn$ for $m \in M, r \in R, n \in N$. Alternately, $M \otimes_R N$ is the universal abelian group such that if X is an abelian group and $f: M \times N \to X$ is a group morphism with f(mr, n) = f(m, rn) for all $m \in M, r \in R, n \in N$, then there is a unique group morphism $f': M \otimes_R N \to X$ such that $f(m, n) = f'(m \otimes n)$.

Now, $\operatorname{Hom}(M,X)$ has a left action of R given by $r \cdot f = f(-\cdot r)$. Given a function $f: M \times N \to X$ as above, the function $n \mapsto f(-,n)$ is an element of $\operatorname{Hom}_R(N,\operatorname{Hom}(M,X))$. The universal property of the tensor product then means that we have an isomorphism

$$\operatorname{Hom}(M \otimes_R N, X) \cong \operatorname{Hom}_R(N, \operatorname{Hom}(M, X))$$

 $f \mapsto (n \mapsto f(-, n)),$
 $(m \otimes n \mapsto f(n)(m)) \longleftrightarrow f.$

If M and X also have a left action of some other module S, then similarly we have an isomorphism

$$\operatorname{Hom}_S(M \otimes_R N, X) \cong \operatorname{Hom}_R(N, \operatorname{Hom}_S(M, X)).$$

This is called tensor-hom adjunction, because it is an adjunction between the functors

$$M \otimes_R - : R\text{-mod} \to S\text{-mod}$$
 on the left and $\text{Hom}(M, -) : S\text{-mod} \to R\text{-mod}$ on the right.

If $R = \Bbbk G$ and $S = \Bbbk H$ are the group algebras of some finite groups G and H, then an adjunction $L \dashv R$ between two functors $L : \operatorname{Rep} G \to \operatorname{Rep} H$ and $R : \operatorname{Rep} H \to \operatorname{Rep} G$ can be understood on the level of characters as

$$\langle L\chi_1, \chi_2 \rangle_H = \langle \chi_1, R\chi_2 \rangle_G$$

where χ_1 is a character of G and χ_2 is a character of H. Next we'll look at some examples of these functors between representations of groups and use tensor-hom to find some adjunctions between them.

Scenario 1: subgroup. Suppose H is a subgroup of a finite group G. For a representation V of H and an element $g \in G$, the conjugate gHg^{-1} is also a subgroup of G, and we write gV for the conjugate representation with action $ghg^{-1} \cdot gv = g(h \cdot v)$. In the literature, these are sometimes denoted gH and gV . We have 2 exact functors between the categories $\operatorname{Rep} G$ and $\operatorname{Rep} H$:

1. The restriction functor $\operatorname{Res}_H^G:\operatorname{Rep} G\to\operatorname{Rep} H$ sends a G-representation V to its underlying H-representation. We can write this in a number of ways:

$$\operatorname{Res}_{H}^{G}(V) \cong \mathbb{k} G \otimes_{\mathbb{k} G} V \cong \operatorname{Hom}_{G}(\mathbb{k} G, V) \text{ with action } h \cdot f = f(-\cdot h)$$

$$v \leftrightarrow 1 \otimes v \leftrightarrow (g \mapsto g \cdot v)$$

2. The induction functor $\operatorname{Ind}_H^G : \operatorname{Rep} H \to \operatorname{Rep} G$ sends an H-representation V to $\bigoplus_i g_i V$ where $1 = g_1, g_2, \ldots, g_{|G|/|H|}$ are H-coset representatives, and the action is $g \cdot g_i v = g_j(h \cdot v)$ where $h \in H$ and g_j are the unique elements with $gg_i = g_j h$. We have

$$\operatorname{Ind}_{H}^{G}(V) \cong \mathbb{k}G \otimes_{\mathbb{k}H} V \cong \operatorname{Hom}_{H}(\mathbb{k}G, V) \text{ with action } g \cdot f = f(-\cdot g)$$

$$\sum_{i} g_{i}v \leftrightarrow \sum_{i} g_{i} \otimes v \mapsto (hg_{i}^{-1} \mapsto h \cdot v_{i})$$

$$\sum_{i} g_{i}f(g_{i}^{-1}) \leftrightarrow \sum_{i} g_{i} \otimes f(g_{i}^{-1}) \leftarrow f$$

(Note that $\operatorname{Hom}_H(\Bbbk G, V)$ is sometimes called *coinduction*, which for general algebra modules is not necessarily isomorphic to induction.)

Scenario 2: quotient. Suppose N is a normal subgroup of G and H = G/N, and write ϕ for the projection map $G \to H$. The H-module $\mathbb{k}H$ can then be interpreted as a left or right G-module with action $g \cdot h = \phi(g)h$ or $h \cdot g = h\phi(g)$. We define $e_N \in \mathbb{k}G$ by

$$e_N = \frac{1}{|N|} \sum_{n \in N} n, \text{ so we have:} \begin{array}{rcl} e_N^2 &=& e_N, \\ ne_N &=& e_N \text{ for } n \in N, \\ ge_N &=& e_N g \text{ for } g \in G. \end{array}$$

We again have 2 exact functors between the categories RepG and RepH:

1. The inflation (or lifting) functor $\operatorname{Inf}_H^G:\operatorname{Rep} H\to\operatorname{Rep} G$ sends an H-representation V to the same vector space with G action $g\cdot v=\phi(g)\cdot v$. We can write this in a number of ways:

$$Inf_H^G(V) \cong \mathbb{k}H \otimes_{\mathbb{k}H} V \cong Hom_H(\mathbb{k}H, V) \text{ with action } g \cdot f = f(-\cdot \phi(g))$$

$$v \leftrightarrow 1 \otimes v \leftrightarrow (h \mapsto h \cdot v)$$

If H is also a subgroup of G so that we have a semi-direct product decomposition $G = H \ltimes N$, then we also have $\operatorname{Inf}_H^G(V) \cong e_N \otimes_{\mathbb{R}^H} V = (e_N \mathbb{R}^H) \otimes_{\mathbb{R}^H} V$ with $v \mapsto e_N \otimes v$. This is because any $g \in G$ can be written as g = hn with $h = \phi(g) \in H$ and $n \in N$, so

$$g \cdot e_N \otimes v = hne_N \otimes v = he_N \otimes v = e_N h \otimes V = e_N \otimes (h \cdot v).$$

2. The invariants functor $\operatorname{Inv}_H^G:\operatorname{Rep} G\to\operatorname{Rep} H$ sends an G-representation V to the subspace $V^N=\{v\in V\mid n\cdot v=v\;\forall n\in N\}$. The action of $\phi(g)\in H$ is $\phi(g)\cdot v=g\cdot v$, which is well-defined since if $\phi(g)=\phi(g')$ then g=g'n for some $n\in N$, and $n\cdot v=v$. We have

$$\operatorname{Inv}_{H}^{G}(V) \cong e_{N}V \cong \mathbb{k}H \otimes_{\mathbb{k}G}V \cong \operatorname{Hom}_{G}(\mathbb{k}H, V) \text{ with } h \cdot f = f(-\cdot h)$$

$$v \leftrightarrow e_{N}v \leftrightarrow 1 \otimes v \mapsto (-\cdot v)$$

$$e_{N}f(1) \leftrightarrow e_{N}f(1) \leftrightarrow 1 \otimes f(1) \leftrightarrow f$$

(Note that $\operatorname{Hom}_H(\Bbbk G, V) = V_N$ is called *coinvariants*, which for general algebra modules is not necessarily isomorphic to invariants.)

Using these different expressions and tensor-hom adjunction, we obtain the following bi-adjunctions.

Proposition. For finite groups G and H:

- When $H \subseteq G$, Ind_H^G is both left and right adjoint to Res_H^G .
- When H = G/N, Inv_H^G is both left and right adjoint to Inf_H^G .

Suppose H and K are subgroups of G. For $g \in G$, the set $KgH = \{kgh \mid k \in K, h \in H\}$ is called a *double coset*. The set of double cosets is denoted $K \setminus G/H$, and all the double cosets are disjoint (since if $k_1g_1h_1 = k_2g_2h_2$ then $g_1 = k_1^{-1}k_2g_2h_2h_1^{-1} \in Kg_1H$). Note that, unlike single cosets, double cosets can be very asymmetrical. For example, if $G = S_3$, $H = \{1, (12)\}$ and $K = \{1, (23)\}$ then the double cosets are $\{1, (12), (23), (132)\}$ and $\{(13), (123)\}$.

Now, let s_1, \ldots, s_n be a set of double coset representatives (so $G = \bigsqcup K s_i H$), and for each i choose representatives $k_{i,j}$ for the H-cosets comprising $K s_i H$. That is, $\{k_{i,j} \mid j\}$ is a family of coset representatives for $(s_i H s_i^{-1} \cap K) \subseteq K$. Then we have

$$\operatorname{Res}_{K}^{G}\operatorname{Ind}_{H}^{G}V = \bigoplus_{i=1}^{n} \bigoplus_{j} k_{i,j} s_{i} V = \bigoplus_{i=1}^{n} \operatorname{Ind}_{s_{i}Hs_{i}^{-1} \cap K}^{K} \operatorname{Res}_{s_{i}Hs_{i}^{-1} \cap K}^{s_{i}Hs_{i}^{-1}}(s_{i}V).$$

This is called the *Mackey formula*.

5 Harish-Chandra induction and restriction

Let **G** be a connected reductive group over $\overline{\mathbb{F}}_p$ and F a Steinberg map on **G**. Let **P** be an F-stable parabolic subgroup of **G** and **L** an F-stable Levi subgroup of **P** so that we have an F-stable Levi decomposition $\mathbf{P} = \mathbf{L} \ltimes \mathbf{U}$.

We define exact bi-adjoint functors called Harish-Chandra induction and restriction:

$$R_{\mathbf{L} \subseteq \mathbf{P}}^{\mathbf{G}} = \operatorname{Ind}_{\mathbf{P}^F}^{\mathbf{G}^F} \circ \operatorname{Inf}_{\mathbf{L}^F}^{\mathbf{P}^F} \quad \text{and} \quad {^*\!R}_{\mathbf{L} \subseteq \mathbf{P}}^{\mathbf{G}} = \operatorname{Inv}_{\mathbf{L}^F}^{\mathbf{P}^F} \circ \operatorname{Res}_{\mathbf{P}^F}^{\mathbf{G}^F}.$$

Here are some more ways of writing these:

$$R_{\mathbf{L}\subseteq\mathbf{P}}^{\mathbf{G}}(V) \cong \mathbb{k}\mathbf{G}^{F} \otimes_{\mathbb{k}\mathbf{P}^{F}} \mathrm{Inf}_{\mathbf{L}^{F}}^{\mathbf{P}^{F}}(V) \cong \mathbb{k}(\mathbf{G}^{F}/\mathbf{U}^{F}) \otimes_{\mathbb{k}\mathbf{L}^{F}} V \cong (\mathbb{k}\mathbf{G}^{F}e_{\mathbf{U}^{F}}) \otimes_{\mathbb{k}\mathbf{L}^{F}} V$$

$$g \otimes v \leftrightarrow (g\mathbf{U}^{F}) \otimes v \leftrightarrow (ge_{\mathbf{U}^{F}}) \otimes v$$

$$*R_{\mathbf{L}\subseteq\mathbf{P}}^{\mathbf{G}}(V) \cong V^{\mathbf{U}_{F}} = \{v \in V \mid u \cdot v = v \ \forall u \in \mathbf{U}^{F}\} \cong e_{\mathbf{U}^{F}}V$$

$$v \leftrightarrow (g\mathbf{U}^{F}) \otimes v$$

where $e_{\mathbf{U}^F} = \frac{1}{|\mathbf{U}^F|} \sum_{u \in \mathbf{U}^F} u$ and the right action of l on $\mathbb{k}(\mathbf{G}^F/\mathbf{U}^F)$ is $g\mathbf{U}^F \cdot l = gl\mathbf{U}^F$, which is well-defined since \mathbf{L} normalises \mathbf{U} . These R functors are transitive, in the sense that if $\mathbf{M} \subset \mathbf{Q}$ are F-stable Levi and parabolic subgroups contained in \mathbf{L} and \mathbf{P} respectively then

$$R_{\mathbf{L}\subset\mathbf{P}}^{\mathbf{G}} \circ R_{\mathbf{M}\subset\mathbf{L}\cap\mathbf{Q}}^{\mathbf{L}} = R_{\mathbf{M}\subset\mathbf{P}}^{\mathbf{G}} \text{ and } *R_{\mathbf{M}\subset\mathbf{L}\cap\mathbf{Q}}^{\mathbf{L}} \circ *R_{\mathbf{L}\subset\mathbf{P}}^{\mathbf{G}} = *R_{\mathbf{M}\subset\mathbf{P}}^{\mathbf{G}}$$

We also obtain a version of the Mackey formula when $\mathbf{M} \subset \mathbf{Q}$ are arbitrary F-stable Levi and parabolic subgroups of \mathbf{G} :

Theorem (5.2.1 in [DM]). We have

$${^*\!R}_{\mathbf{L}\subseteq\mathbf{P}}^{\mathbf{G}}\circ R_{\mathbf{M}\subseteq\mathbf{Q}}^{\mathbf{G}}(V) = \bigoplus_x R_{(\mathbf{L}\cap x\mathbf{M}x^{-1})\subseteq (\mathbf{L}\cap x\mathbf{Q}x^{-1})}^{\mathbf{L}}\circ {^*\!R}_{(\mathbf{L}\cap x\mathbf{M}x^{-1})\subseteq (\mathbf{P}\cap x\mathbf{M}x^{-1})}^{\mathbf{C}}(xV)$$

where x ranges over representatives of the double cosets $\mathbf{L}^F \setminus \mathcal{S}(\mathbf{L}, \mathbf{M})^F / \mathbf{M}^F$, where

$$S(\mathbf{L}, \mathbf{M}) = \{ x \in \mathbf{G} \mid \mathbf{L} \cap x \mathbf{M} x^{-1} \text{ contains a maximal torus of } \mathbf{G} \}.$$

Note that the natural map $\mathbf{L}\backslash \mathcal{S}(\mathbf{L},\mathbf{M})/\mathbf{M} \to \mathbf{P}\backslash \mathbf{G}/\mathbf{Q}$ given by $\mathbf{L}x\mathbf{M} \mapsto \mathbf{P}x\mathbf{Q}$ is an isomorphism [DM, Lemma 5.2.2], so really this is a sum over $(\mathbf{P}\backslash \mathbf{G}/\mathbf{Q})^F = \mathbf{P}^F\backslash \mathbf{G}^F/\mathbf{Q}^F$ with the extra assumption that the representatives x be chosen such that the intersections $\mathbf{L} \cap x\mathbf{M}x^{-1}$ contain maximal tori, so that the R functors are well-defined.

Example. Take $\mathbf{L} = \mathbf{T}$ to be a maximal torus. Then $\mathbf{T} \cap x\mathbf{T}x^{-1}$ contains a maximal torus if and only if $x \in N_{\mathbf{G}}(\mathbf{T})$, and hence $\mathbf{T} \setminus \mathcal{S}(\mathbf{T}, \mathbf{T})/\mathbf{T} = N_{\mathbf{G}}(\mathbf{T})/\mathbf{T} = \mathbf{W}$. So, if \mathbf{B}, \mathbf{B}' are F-stable Borel subgroups containing \mathbf{T} and χ, χ' are characters of \mathbf{T} , then by adjunction and the Mackey formula we have

$$\langle R_{\mathbf{T} \subseteq \mathbf{B}}^{\mathbf{G}} \chi, R_{\mathbf{T} \subseteq \mathbf{B}'}^{\mathbf{G}} \chi' \rangle_{\mathbf{G}^F} = \langle \chi, *R_{\mathbf{T} \subseteq \mathbf{B}}^{\mathbf{G}} \circ R_{\mathbf{T} \subseteq \mathbf{B}'}^{\mathbf{G}} \chi' \rangle_{\mathbf{T}^F} = \sum_{w \in \mathbf{W}^F} \langle \chi, x_w \chi' \rangle_{\mathbf{T}^F}$$

where $x_w \in N_{\mathbf{G}}(\mathbf{T})^F$ is a representative of w and $x\chi$ is the character $x\chi(g) = \chi(xgx^{-1})$. This gives an explicit formula for the dimensions of hom spaces between representations $\mathbf{R}_{\mathbf{T}}^{\mathbf{G}}V$. One can extend this result to arbitrary \mathbf{L} and use it prove the following theorem:

Theorem (5.3.1 in [DM]). The character of $R_{\mathbf{L}\subseteq\mathbf{P}}^{\mathbf{G}}(V)$ is independent of the parabolic subgroup \mathbf{P} containing \mathbf{L} . Consequently, we shorten the notation to $R_{\mathbf{L}}^{\mathbf{G}}$.

If **L** is an F-stable Levi subgroup of an F-stable parabolic subgroup of **G**, and Λ is a simple \mathbf{L}^F -representation, then we call (\mathbf{L}, Λ) a *cuspidal pair* if one of the following conditions are satisfied (these conditions are equivalent by adjunction):

- 1. If $\mathbf{L}' \subseteq \mathbf{L}$ is an F-stable Levi subgroup of an F-stable parabolic subgroup of \mathbf{L} , V is a simple $(\mathbf{L}')^F$ -representation, and there exists a surjective morphism $R^{\mathbf{L}}_{\mathbf{L}'}V' \twoheadrightarrow \Lambda$, then $\mathbf{L} = \mathbf{L}'$ and $V \cong \Lambda$.
- 2. If $\mathbf{L}' \subseteq \mathbf{L}$ is an F-stable Levi subgroup of an F-stable parabolic subgroup of \mathbf{L} , then ${}^*R^{\mathbf{L}}_{\mathbf{L}'}\Lambda = 0$.

The Harish-Chandra series $\operatorname{Simp}(\mathbf{G}^F \mid (\mathbf{L}, \Lambda))$ of a cuspidal pair (\mathbf{L}, Λ) is the set of simple quotients of $R_{\mathbf{L}}^{\mathbf{G}}\Lambda$, or equivalently the set of all \mathbf{G}^F -representations V such that Λ is a submodule of ${}^*R_{\mathbf{L}}^{\mathbf{G}}(V)$.

Theorem (5.3.7 in [DM]). If (\mathbf{L}, Λ) and (\mathbf{L}', Λ') are cuspidal pairs, then they have the same series if they are \mathbf{G}^F -conjugate (meaning there exists $x \in \mathbf{G}^F$ with $\mathbf{L}' = x\mathbf{L}x^{-1}$ and $\Lambda' = x\Lambda$), and otherwise have disjoint series. Consequently, the set of simples $\operatorname{Simp}(\mathbf{G}^F)$ partitions into Harish-Chandra series.

For fixed \mathbf{L} , the Harish-Chandra series associated to \mathbf{L} is the union of the Harish-Chandra series of all cuspidal (\mathbf{L} , Λ). If \mathbf{L} is a quasi-split torus then all representations of \mathbf{L}^F are cuspidal, and this series is called the principal series. If $\mathbf{L} = \mathbf{G}$ then the series consists only of cuspidal representations and is called the discrete series. So in theory, we can split the classification of representations of \mathbf{G}^F into two steps: compute the discrete series of any $\mathbf{L} \subseteq \mathbf{G}$ contained in an F-stable parabolic, then compute the Harish-Chandra series on these representations. In practice, the discrete series representations are the hardest ones to obtain. However, the second step is something we can build up a theory for.

6 Classifying simples in $R_{\rm T}^{\rm G} \mathbb{1}$

To describe the simple components of $R_{\mathbf{L}}^{\mathbf{G}}\Lambda$, we examine endomorphisms of $R_{\mathbf{L}}^{\mathbf{G}}\Lambda$ for (\mathbf{L}, Λ) cuspidal. The ring $\mathcal{H}(\mathbf{L}, \Lambda) = \operatorname{End}(R_{\mathbf{L}}^{\mathbf{G}}\Lambda)$ is called the *Hecke algebra* of (\mathbf{L}, Λ) . If

$$R_{\mathbf{L}}^{\mathbf{G}}\Lambda = L_1^{m_1} \oplus \cdots \oplus L_k^{m_k}$$

is the decomposition of $R_{\mathbf{L}}^{\mathbf{G}}\Lambda$ into pairwise non-isomorphic irreducibles L_i , then $\mathcal{H}(\mathbf{L},\Lambda)$ is the product of the matrix algebras Mat_{m_i} , and then L_1,\ldots,L_k are exactly the irreducible modules of $\mathcal{H}(\mathbf{L},\Lambda)$. Thus, classifying the representations in $\mathrm{Simp}(\mathbf{G}^F \mid (\mathbf{L},\Lambda))$ is the same as classifying the modules of $\mathcal{H}(\mathbf{L},\Lambda)$, which is the same as finding idempotents $e_i \in \mathcal{H}(\mathbf{L},\Lambda)$ corresponding to the projection onto Mat_{m_i} . In particular, the module L_i is $e_i R_{\mathbf{L}}^{\mathbf{G}}(\Lambda)$.

Let's start with the most basic case, $\mathbf{L} = \mathbf{T}$ is a quasi-split torus contained in an F-stable Borel \mathbf{B} , and $\Lambda = \mathbb{1}$ is the trivial representation of \mathbf{T} . We have $R_{\mathbf{T}\subseteq\mathbf{B}}^{\mathbf{G}}\mathbb{1} = \operatorname{Ind}_{\mathbf{B}^F}^{\mathbf{G}^F}\mathbb{1} \cong \mathbb{k}Ge_{\mathbf{B}^F}$ where $e_{\mathbf{B}^F} = \frac{1}{|B^F|} \sum_{b \in \mathbf{B}^F} b$. This means we have an algebra isomorphism

$$\mathcal{H}(\mathbf{T}, \mathbb{1}) = \operatorname{Hom}(R_{\mathbf{T}}^{\mathbf{G}} \mathbb{1}, R_{\mathbf{T}}^{\mathbf{G}} \mathbb{1}) \cong e_{\mathbf{B}^F} \mathbb{k} \mathbf{G}^F e_{\mathbf{B}^F}.$$

Recall the Bruhat decomposition: \mathbf{G}^F is the disjoint union of $\mathbf{B}^F w \mathbf{B}^F$ for $w \in \mathbf{W}^F$, where $\mathbf{W} = N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$ is the Weyl group. Consequently, the elements

$$a_w = \frac{1}{|\mathbf{B}^F|} \sum_{x \in \mathbf{B}^F w \mathbf{B}^F} x \text{ for } w \in \mathbf{W}^F$$

are a basis for $e_{\mathbf{B}^F} \mathbb{k} \mathbf{G}^F e_{\mathbf{B}^F}$. Let S^F be the set of Coxeter generators for \mathbf{W}^F and $n = |S^F|$.

Theorem (67.2 and 67.4 in [CR]). For $w \in \mathbf{W}^F$ and $s \in S^F$ with $\ell(sw) > \ell(w)$, we have $a_s a_w = a_{sw}$. If \mathbf{W}^F has presentation

$$\langle s_1, \dots, s_n \mid s_i^2 = 1, \underbrace{s_i s_j s_i \dots}_{m_{i,j} \text{ terms}} = \underbrace{s_j s_i s_j \dots}_{m_{i,j} \text{ terms}} \rangle$$

as a Coxeter group, then $\mathcal{H}(\mathbf{T}, 1) \cong e_{\mathbf{B}^F} k \mathbf{G}^F e_{\mathbf{B}^F}$ has presentation

$$\langle \mathbb{k}e, a_1, \dots, a_n \mid a_i^2 = q_i e + (q_i - 1)a_i, \underbrace{a_i a_j a_i \dots}_{m_{i,j} \text{ terms}} = \underbrace{a_j a_i a_j \dots}_{m_{i,j} \text{ terms}} \rangle$$

as a \mathbb{k} -algebra, where $e = e_{\mathbf{B}^F}$ is the identity, $a_i = a_{s_i}$ and $q_i = |\mathbf{B}^F|/|s_i\mathbf{B}^Fs_i^{-1}\cap\mathbf{B}^F|$.

For an arbitrary Coxeter system (W, S), a commutative ring R and invertible elements $q_i \in R$ for $1 \le i \le n$ with $q_i = q_j$ whenever $s_i, s_j \in S$ are conjugate in W, the abstract Iwahori-Hecke algebra $\mathcal{H}(W, (q_1, \ldots, q_n))$ is the R-algebra with generators a_1, \ldots, a_n and presentation as in the theorem above. These algebras are very well-studied. It is possible to show, using this algebra and a result called Tits' deformation theorem, that $\mathcal{H}(\mathbf{T}, \mathbb{1})$ is isomorphic to the group algebra $\mathbb{k}\mathbf{W}^F$ (see [CR, §68] or [DM, §6.2]). Consequently, there is a bijection between the representations in Simp($\mathbf{G}^F \mid (\mathbf{T}, \mathbb{1})$) and the irreducible representations of \mathbf{W}^F .

Instead of covering the full correspondence, we'll look at one important example. For a subgroup H of a finite group G, we write $\mathbb{1}_H^G$ for the character of $\operatorname{Ind}_H^G \mathbb{1}$. Recall that for $I \subseteq S^F$ we write $\mathbf{P}_I = \mathbf{BW}_I^F \mathbf{B}$ for the corresponding parabolic subgroup, and \mathbf{L}_I for the Levi subgroup with $\mathbf{P}_I = \mathbf{L}_I \ltimes R_u(\mathbf{P}_I)$.

Proposition (67.9 in [CR]). The map $\chi \to \hat{\chi}$ from virtual characters of \mathbf{W}^F to virtual characters of \mathbf{G}^F given by

$$\chi = \sum_{I \subseteq S^F} n_I \mathbb{1}_{\mathbf{W}_J^F}^{\mathbf{W}^F} \mapsto \hat{\chi} = \sum_{I \subseteq S^F} n_I \mathbb{1}_{\mathbf{P}_I^F}^{\mathbf{G}^F}$$

for $n_I \in \mathbb{Z}$ is well-defined. Moreover, $\langle \chi_1, \chi_2 \rangle_{\mathbf{W}^F} = \langle \hat{\chi}_1, \hat{\chi}_2 \rangle_{\mathbf{G}^F}$ for all χ_1, χ_2 .

For a Coxeter system (W, S), it may or may not be possible to write all simple characters in the form $\sum_{I\subseteq S} n_I \mathbb{1}_{W_I}^W$. It is mentioned in [CR] in the remark following 67.9 that it is possible for GL_n (type A_{n-1}), but not for type B_2 . However, in every type the character of the sign representation of $\mathbb{k} \mathbf{W}^F$, which is the 1-dimensional representation where the generators s_i act by -1, can be written in this form. The map $\chi \mapsto \hat{\chi}$ then gives us the Steinberg character,

$$\operatorname{St}_{\mathbf{G}^F} = \sum_{I \subset S^F} (-1)^{|I|} \mathbb{1}_{\mathbf{P}^F}^{\mathbf{G}^F}.$$

This is the character of an irreducible representation appearing in $\operatorname{Simp}(\mathbf{G}^F \mid (\mathbf{T}, 1))$ and not appearing in $\operatorname{Simp}(\mathbf{G}^F \mid (\mathbf{L}_I, 1))$ for any $I \neq \emptyset$ (see [CR, Theorem 67.10]).

Example. Let G be either $\mathrm{SL}_2(\mathbb{F}_q)$ or $\mathrm{GL}_2(\mathbb{F}_q)$ and B the subgroup of upper triangular matrices. If χ is the character of $\mathbb{k}(G/B)$, then $\mathrm{St}_G = \mathbb{1}_B^G - \mathbb{1}_G^G = \chi - 1$.

Tensoring with the sign representation is an involution on the simple characters of $\mathcal{H}(\mathbf{T}, 1)$. This extends to an involution on the simple characters of \mathbf{G}^F , and in fact this involution can be described explicitly as

$$D_{\mathbf{G}} = \sum_{I \subseteq S} (-1)^{|I|} R_{\mathbf{L}_I}^{\mathbf{G}} \circ {}^*R_{\mathbf{L}_I}^{\mathbf{G}}$$

(see [DM, §7.2]). This functor is self-adjoint. Moreover, if (\mathbf{L}_I, Λ) is a cuspidal pair and γ is the character of a module in $\operatorname{Simp}(\mathbf{G}^F \mid (\mathbf{L}, \Lambda))$, then $(-1)^{|I|}D_{\mathbf{G}}\gamma$ is the character of another module in $\operatorname{Simp}(\mathbf{G}^F \mid (\mathbf{L}, \Lambda))$.

7 Classifying simples of Harish-Chandra series

Now let's go back to the more general case of $\mathcal{H}(\mathbf{L}, \Lambda) = \operatorname{End}(R_{\mathbf{L}}^{\mathbf{G}}\Lambda)$ with (\mathbf{L}, Λ) cuspidal. By adjunction and the Mackey formula we have

$$\mathcal{H}(\mathbf{L}, \Lambda) \cong \operatorname{Hom}_{\mathbf{L}^{F}}(\Lambda, {}^{*}R_{\mathbf{L}}^{\mathbf{G}}R_{\mathbf{L}}^{\mathbf{G}}\Lambda)$$

$$\cong \bigoplus_{x \text{ rep. of } \mathbf{L}^{F} \setminus \mathcal{S}(\mathbf{L}, \mathbf{L})^{F}/\mathbf{L}^{F}} \operatorname{Hom}\left(\Lambda, R_{\mathbf{L} \cap x\mathbf{L}x^{-1}}^{\mathbf{L}} {}^{*}R_{\mathbf{L} \cap x\mathbf{L}x^{-1}}^{x\mathbf{L}x^{-1}}(x\Lambda)\right)$$

as vector spaces. Since (\mathbf{L}, Λ) is cuspidal, the restriction on the right is only non-zero when $\mathbf{L} = x\mathbf{L}x^{-1}$, and if $x \in \mathbf{G}$ satisfies this then it is automatically in $S(\mathbf{L}, \mathbf{L})^F$ and the double coset $\mathbf{L}x\mathbf{L}$ is equal to the left coset $x\mathbf{L}$. Thus we have

$$\mathcal{H}(\mathbf{L},\Lambda) \;\cong\; \bigoplus_{x \text{ rep. of } N_{\mathbf{G}}(\mathbf{L})^F/\mathbf{L}^F} \mathrm{Hom}(\Lambda,x\Lambda) \;\cong\; \bigoplus_{x \in N_{\mathbf{G}}(\mathbf{L},\Lambda)^F/\mathbf{L}^F} \Bbbk$$

as vector spaces, where $N_{\mathbf{G}^F}(\mathbf{L}, \Lambda) = \{x \in \mathbf{G}^F \mid \mathbf{L} = x\mathbf{L}x^{-1} \text{ and } \Lambda \cong x\Lambda\}$. This tells us we should look at the group $\mathbf{W}_{\mathbf{G}}(\mathbf{L}, \Lambda) = N_{\mathbf{G}}(\mathbf{L}, \Lambda)/\mathbf{L}$, which is called the *relative Weyl group* for the cuspidal pair (\mathbf{L}, Λ) . We can also define a relative Weyl group just for \mathbf{L} by $\mathbf{W}_{\mathbf{G}}(\mathbf{L}) = \mathbf{W}_{\mathbf{G}}(\mathbf{L}, 1) = N_{\mathbf{G}}(\mathbf{L})/\mathbf{L}$, and then the usual Weyl group is $\mathbf{W} = \mathbf{W}_{\mathbf{G}}(\mathbf{T}) = \mathbf{W}_{\mathbf{G}}(\mathbf{T}, 1)$. In summary,

$$\begin{array}{rcl} \mathbf{W}^F &=& N_{\mathbf{G}}(\mathbf{T})^F/\mathbf{T}^F &=& \{x\mathbf{T}^F \in \mathbf{G}^F/\mathbf{T}^F \mid x\mathbf{T}x^{-1} = \mathbf{T}\}, \\ \mathbf{W}_{\mathbf{G}}(\mathbf{L})^F &=& N_{\mathbf{G}}(\mathbf{L})^F/\mathbf{L}^F &=& \{x\mathbf{L}^F \in \mathbf{G}^F/\mathbf{L}^F \mid x\mathbf{L}x^{-1} = \mathbf{L}\}, \\ \mathbf{W}_{\mathbf{G}}(\mathbf{L},\Lambda)^F &=& N_{\mathbf{G}}(\mathbf{L},\Lambda)^F/\mathbf{L}^F &=& \{x\mathbf{L}^F \in \mathbf{G}^F/\mathbf{L}^F \mid x\mathbf{L}x^{-1} = \mathbf{L} \text{ and } x\Lambda \cong \Lambda\}. \end{array}$$

Clearly $\mathbf{W}_{\mathbf{G}}(\mathbf{L}, \Lambda)^F$ is a subgroup of $\mathbf{W}_{\mathbf{G}}(\mathbf{L})^F$, and then we can relate both of these back to \mathbf{W}^F as follows.

Proposition (3.4.3 in [DM]). If $I, J \subseteq S$, the Levi subgroups $\mathbf{L}_I, \mathbf{L}_J$ are conjugate in \mathbf{G} if and only if I, J are conjugate in \mathbf{W} if and only if $\mathbf{W}_I, \mathbf{W}_J$ are conjugate in \mathbf{W} . Consequently, we have an isomorphism

$$N_{\mathbf{W}}(\mathbf{W}_I)/\mathbf{W}_I \cong \mathbf{W}_{\mathbf{G}}(\mathbf{L}_I)$$

 $(x\mathbf{T})\mathbf{W}_I \mapsto x\mathbf{L}_I.$

For $I \subseteq S$, each coset $w\mathbf{W}_I$ has a unique minimal-length representative (in [DM] these elements are called 'reduced-I').

Lemma (6.1.7 and 6.1.13 in [DM]). We have $\mathbf{N}_{\mathbf{W}}(\mathbf{W}_I) = \mathbf{N}_I \ltimes \mathbf{W}_I$ where

$$\mathbf{N}_I = \{ minimal \ \mathbf{W}_I \text{-}coset \ representatives } w \ with \ wIw^{-1} = I \}.$$

 \mathbf{N}_I is a Coxeter group with generators $\{w_{I\cup\{s\}}w_I \mid s \in S-I\}$, where w_I is the longest element of \mathbf{W}_I . Moreover, if I is F-stable then $\mathbf{N}_{\mathbf{W}}(\mathbf{W}_I)^F = \mathbf{N}_I^F \ltimes \mathbf{W}_I^F$. Consequently, we have an isomorphism

$$\mathbf{N}_I \cong \mathbf{W}_{\mathbf{G}}(\mathbf{L}_I)$$
minimal rep. of $(x\mathbf{T})\mathbf{W}_I \mapsto x\mathbf{L}_I$.

Thus $\mathbf{W}_{\mathbf{G}}(\mathbf{L}, \Lambda)^F$ is a subgroup of $\mathbf{W}_{\mathbf{G}}(\mathbf{L})^F$ which can in turn be interpreted as a subgroup of \mathbf{W}^F .

For a Coxeter system (W, S), we write $Ref(W) = \{wsw^{-1} \mid w \in W, s \in S\}$ for the set of reflections in W. If Φ is a root system for W with positive roots Φ^+ , then by [DM, Proposition 2.2.10] we have $Ref W = \{s_{\alpha} \mid \alpha \in \Phi^+\}$. A reflection subgroup of W is a subgroup W' generated by $W' \cap Ref W$.

Theorem (2.2.11 and 6.2.5 in [DM]). If (W, S) is a Coxeter system and $W' \subseteq W$ is a reflection subgroup, then (W', S(W')) is a Coxeter system where

$$S(W') = \{ r \in \text{Ref}(w) \mid \{ s_{\alpha} \mid \alpha \in \Phi^+, w(\alpha) < 0 \} \cap W' = \{ r \} \}.$$

Proposition (6.1.16 in [DM]). Assume the centre of **G** is connected. If (\mathbf{L}_I, Λ) is cuspidal, then the group $\mathbf{W}_{\mathbf{G}}(\mathbf{L}_I, \Lambda)^F$ is a reflection subgroup of $\mathbf{W}_{\mathbf{G}}(\mathbf{L}_I)^F \cong \mathbf{N}_I^F$. Consequently, $\mathbf{W}_{\mathbf{G}}(\mathbf{L}_I, \Lambda)^F$ is a Coxeter group, and we denote the generators $S(\mathbf{L}_I, \Lambda)$.

Theorem (6.2.6 in [DM] or 3.1.28 in [GM] (more general)). For (\mathbf{L}, Λ) cuspidal, we have an isomorphism

$$\operatorname{End}_{\mathbf{G}^F}(R_{\mathbf{L}}^{\mathbf{G}}\Lambda) \cong \mathcal{H}(\mathbf{W}_{\mathbf{G}}(\mathbf{L},\Lambda)^F, (q^{c_s})_{s \in S(\mathbf{L},\Lambda)})$$

for some integers c_s . Consequently, there is a bijection between $Simp(\mathbf{G}^F|(\mathbf{L},\Lambda))$ and the simple characters of $\mathbf{W}_{\mathbf{G}}(\mathbf{L},\Lambda)^F$.

8 Notes on references

I used the references [DM], [GM] and [CR] for these notes, which each take a very different approach to describing Harish-Chandra theory. Here are some comments on each in case people want to look further into these references:

- [CR] only develops the theory for $R_{\mathbf{T}}^{\mathbf{G}}\mathbb{1}$ as far as I can tell, but gives a very intuitive and explicit description of this case.
- [DM] spends a lot of time describing the isomorphism between $\operatorname{End}_{\mathbf{G}^F}(R_{\mathbf{L}}^{\mathbf{G}}\Lambda)$ and an Iwahori-Hecke algebra in section 6. They are pretty explicit, but leave some details to other references (like the integers c_s in Theorem 6.2.6). Writing out the isomorphism explicitly would mean tracing a whole bunch of definitions throughout the textbook and several research papers, which I am not interested in doing.
- [GM] devotes section 2 to the more general form of $R_{\mathbf{L}}^{\mathbf{G}}$ that we will see in later talks, and only goes into Harish-Chandra theory in section 3. They opt for an excruciating level of generality by studying the theory for any finite group with a BN-pair, which requires a 'twisted extended Iwahori-Hecke algebra'.

References

- [CR] C. W. Curtis, I. Reiner: Methods of representation theory with applications to finite groups and orders, volume II. Wiley, New York, 1987
- [DM] F. Digne, J. Michel: Representations of finite groups of Lie type. Cambridge University Press, 1991.
- [GM] M. Geck, G. Malle: The Character Theory of Finite Groups of Lie Type. Cambridge University Press, 2020.